

WatEr NEEDs, Availability, Quality and Sustainability WE-NEED

Monica Riva Brian Berkowitz Susana Loureiro Daniel Fernandez-Garcia

CONSORTIUM DESCRIPTION

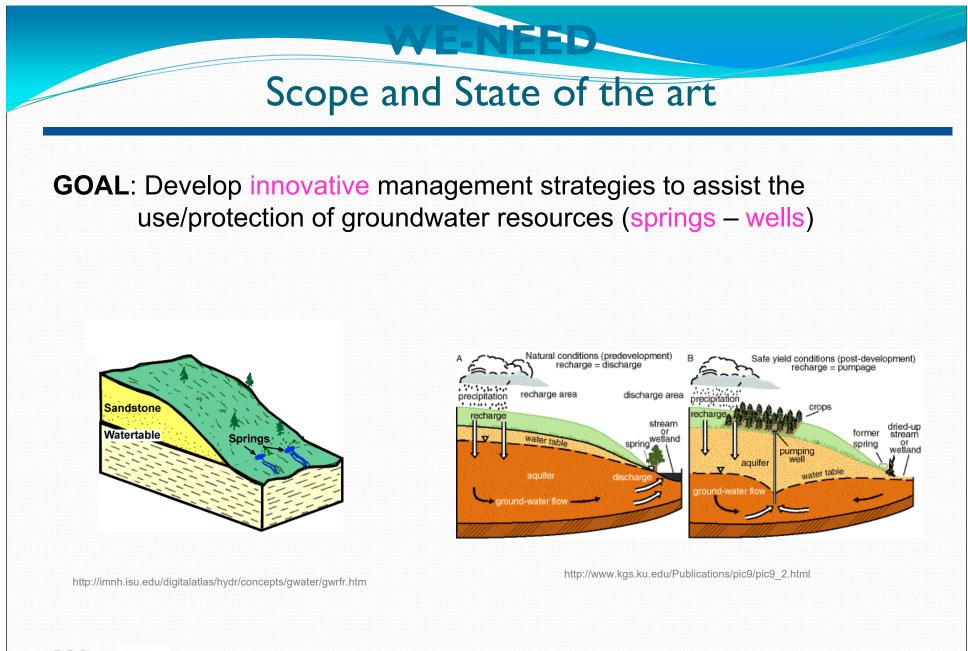
ACRONYM	ΤΟΡΙΟ	Coordination	Partners	
WE-NEED	2			
Water Needs, Availability Sustainability		water management; risk assessment; emerging contaminants; surface and groundwater interaction; multiscale characterization; ecotoxicity		
PRINCIPAL INVESTIGATOR	I	COUNTRY		
Monica Riva	Politecnico di Mil	ano - Polin	ni Italy	
Brian Berkowitz	Weizmann Institute	of Science - Weizm	ann Israel	

Universitat Politecnica de Catalunya

- UAVR

- UPC

Portugal


Spain

Universidade de Aveiro

Susana Loureiro

Daniel Fernandez-Garcia

Water

Scope and State of the art

GOAL: Develop innovative management strategies to assist the use/protection of groundwater resources (springs – wells)

Problems/Failure of classical approaches/Challenges of WE-NEED:

- Heterogeneity of natural systems. <u>Strategy</u>: proper quantification
- Complex dynamics of processes involved. <u>Strategy</u>: process quantification for modeling and decision-making
- Scaling/Statistical Scaling: Transfer knowledge across scales. How to use available information from a range of observational scales to characterize/describe the subsurface at a desired scale (in space and time)? <u>Strategy</u>: increase certainty of predictions

Scope and State of the art

GOAL: Develop innovative management strategies to assist the use/protection of groundwater resources (springs – wells)

WATER QUANTITY : Over-exploitation of groundwater resources WATER QUALITY : Regulated and emerging contaminants (pharmaceuticals, ...)

KEYWORDS: Management/Protection of Groundwater Resources – Sustainability – Uncertanty Quantification - Risk Assessment -Multiscale Statistical Analysis Relevant Study Cases (real scenarios)

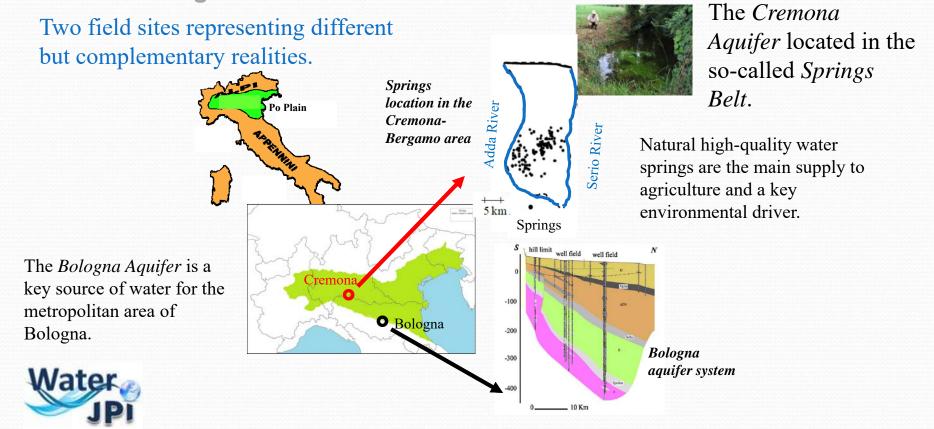
NEE

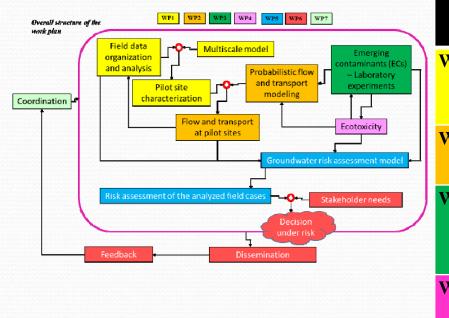
Scientific/Application-oriented objectives are:

- Develop methods/models to include uncertainty quantification and its propagation across scales (as grounded on direct observations/experiments at diverse scales of interest) in risk assessment (under uncertainty).
- Provide quantitative understanding and process-based models of the hydrogeological system and geochemical behavior of reactive chemical species in relevant scenarios.
- Include these results within a **decision making** framework for the **sustainable use of water**, preserving historical heritage, and with acceptable risk to existing ecosystems.
- Assessment of the contaminant-specific **vulnerability** of the aquifer systems.
- Physically-based risk assessment and water management protocols.

AIFE

Scientific/Application-oriented objectives are:

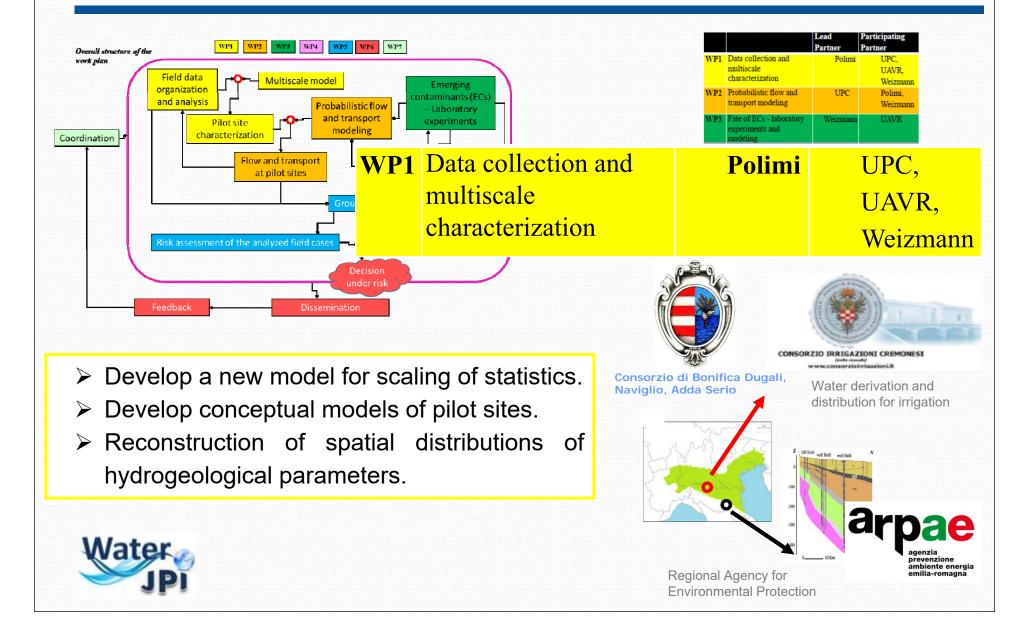

- Develop methods/models to include **uncertainty quantification** and **its propagation across scales** (as grounded on direct observations/experiments at diverse scales of interest) in risk assessment under uncertainty.
- Provide quantitative understanding and process-based models of the hydrogeological system and geochemical behavior of reactive chemical species in relevant scenarios.
- Include these results within a **decision making** framework for the **sustainable use of water**, preserving historical heritage, and with acceptable risk to existing ecosystems.
- Assess the contaminant-specific vulnerability of the aquifer systems.
- Provide physically-based risk assessment and water management protocols.

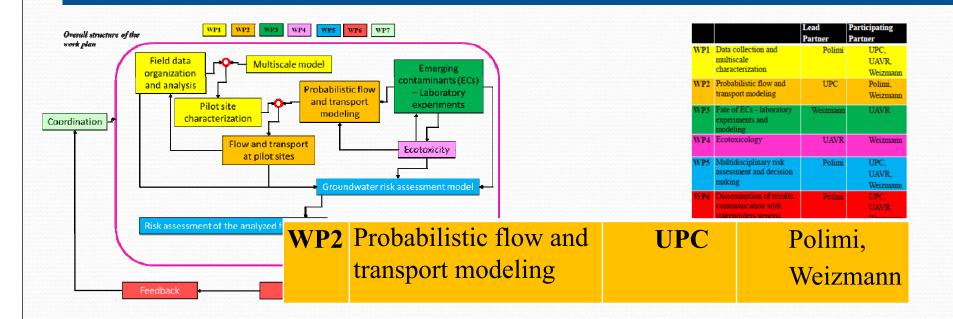

Topic 2 of the WaterWorks 2014 Cofunded Call: "Research and innovation for developing technological solutions and services for Water Resources Management". Within this topic *WE-NEED* deals with (subtopics 2.3 and 2.4) "uncertainty/risk assessment, relevant study cases and innovative decision making tools".

Topic 2 of the WaterWorks 2014 Cofunded Call: "Research and innovation for developing technological solutions and services for Water Resources Management". Within this topic *WE-NEED* deals with (subtopics 2.3 and 2.4) "uncertainty/risk assessment, relevant study cases and innovative decision making tools".

NEF

All partners participate in several WPs


- Shared international experience, state-of-the-art process understanding and modeling techniques
- Mobility of researchers
- Multidisciplinary work

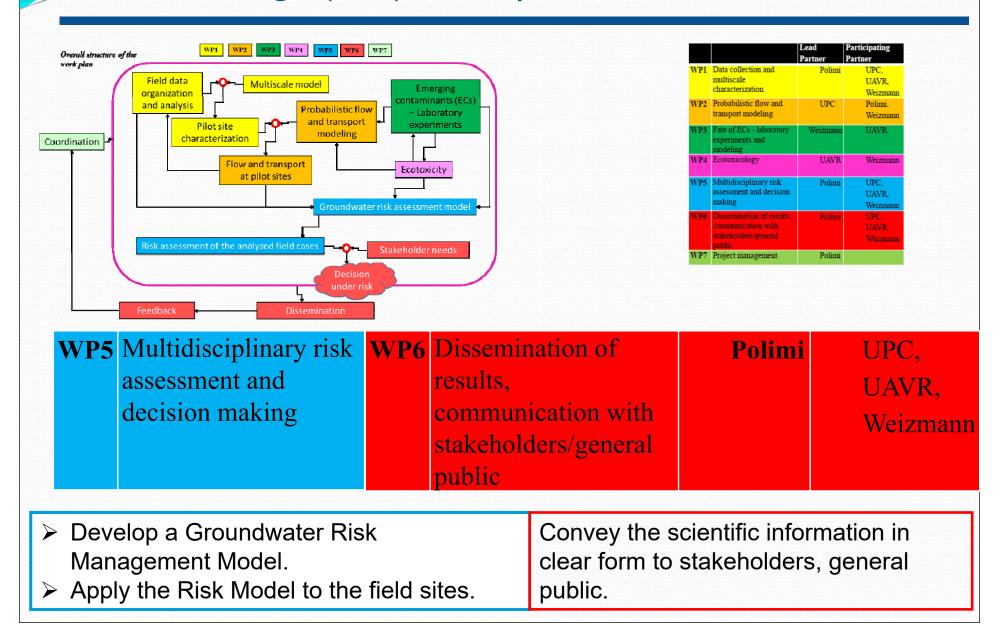

Start day: 20 April 2016

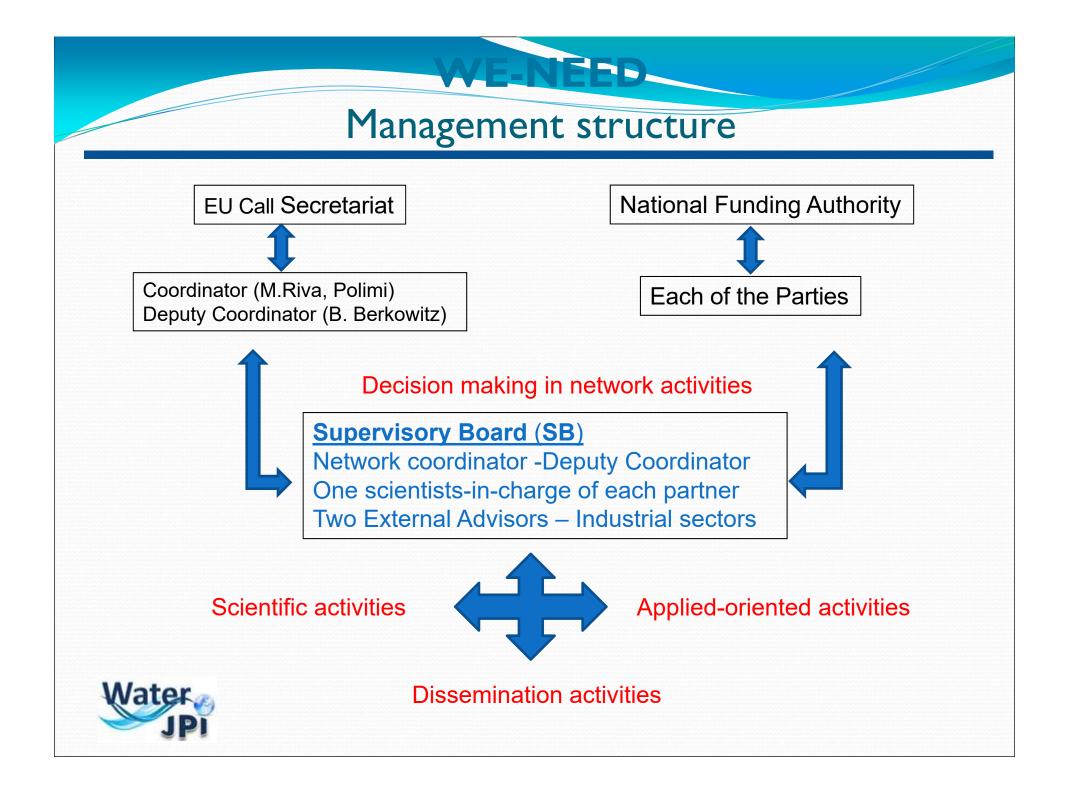
			Lead Partner	Participating Partner
	WP1	Data collection and multiscale characterization	Polimi	UPC, UAVR, Weizmann
	WP2	Probabilistic flow and transport modeling	UPC	Polimi, Weizmann
	WP3	Fate of Emerging Eontaminats (Ecs) - laboratory experiments and modeling	Weizmann	UAVR
	WP4	Ecotoxicology	UAVR	Weizmann
	WP5	Multidisciplinary risk assessment and decision making	Polimi	UPC, UAVR, Weizmann
	WP6	Dissemination of results, communication with stakeholders/general public	Polimi	UPC, UAVR, Weizmann
;	WP7	Project management	Polimi	UPC, UAVR, Weizmann

TEP

NEF

Develop methods for complex reactive transport problems.


- Reconstruct groundwater circulation within the field cases.
- Assess probabilistic time-related protection zones.



NEE

Risk assessment of the analyzed field cases Feedback	Emerging contaminants (ECs) - Laboratory experiments	(ECs) - nd	WP1 Data collection and multiscale characterization WP2 Probabilistic flow and transport modeling WP3 Fate of ECs - laboratory experiments and modeling WP4 Ecotoxicology WP5 Multidisciplinary risk assessment and decision WWeizzmaann Weizmaann UAAVRR UAAVRR	Lead Poime Participating Partiner Poimi UPC, UAVR, Weizmann UPC Polimi, Weizmann UAVR Weizmann Polimi UPC, TATE Dolimi UPC, TATE Weizmann UPC, TATE Weizmann UPC, TATE UAVR Weizmann Polimi UPC, TATE UAVR Weizmann Weizmann UPC, TATE
 Examine the transport behavior of representative ECs (laboratory experiments). Examine ECs transformation in environmentally-relevant conditions. Model fate and transport of ECs. 		 Assess toxicity of groundwater samples. Infer potential increases in toxicity (synergism) due to multiple chemical exposure. 		

NEF

Innovative Aspects

Statistical Scaling. To describe aquifer functioning under the influence of uncertain parameters and processes defined at diverse scales.

Characterization of the fate of **ECs in aquifers**.

Quantification of the effect of **multiple sources of uncertainty** on sustainable management and protection of the groundwater resources.

Expected Impact

Increased levels of confidence by **reducing uncertainties.**

Impacts of groundwater extractions and contaminant dynamics.

Reduce future costs associated with overexploitation/contamination of groundwater.

Innovative Aspects

WENEED

Application of **probabilistic** groundwater models in real/relevant hydrogeological studies (Probabilistic Risk Assessment)

Expected Impact

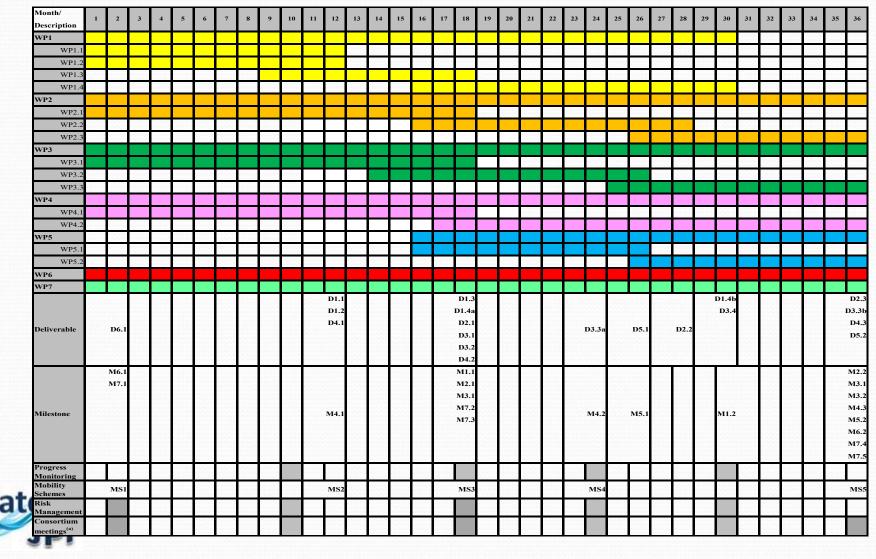
Provision of an understandable and ready-to-use platform for risk analysis and management under uncertainty

CONSORZIO IRRIGAZIONI CREMONESI www.consorzioirrigazioni.it

PRESENTATION INSTRUCTIONS

Please address the following topics:

- state-of-art and the originality and innovative aspects of the project
- objectives of the project and the relation to the scope of the call
- Work package description/ distribution of tasks/ consortium description (management structure)
- Expected impacts (research-related/ innovation-related/ societal-related)
- Address how your project is related to the Call and to the European Research Area objectives (multidisciplinary work; mobility of researchers; knowledge sharing throughout the project lifetime and beyond; effective articulation between Basic Research/Applied Research/Innovation)


15 MINUTE PRESENTATION.

Direct it towards a HEALTHY DISCUSSION OF IDEAS and potential NETWORKING with the other projects

GANTT CHART

r 20 of April 2016

Innovative Aspects (1) **Statistical Scaling**. Models to describe aquifer functioning under the influence of uncertain parameters and processes defined at diverse scales. (2) Characterization of the fate of ECs in aquifers. (3) Quantification of the effect of **multiple sources of uncertainty** (hydrogeological settings, aquifer architecture, abstraction rates, sources and loads of contamination) on sustainable management and protection of the groundwater resources.

 (4) Application of Probabilistic groundwater models in real/relevant hydrogeological studies (Probabilistic Risk Assessment)

(1) Quantification of the uncertainty linked to evaluation of environmental impacts of groundwater extraction and contaminant dynamics (through modeling and innovative experimental analyses).

- (2) Provision of an understandable and **ready-to-use platform for risk analysis and management under uncertainty** (relying on data acquired and rational use of modeling options and capabilities).
- (3) Increased levels of confidence by **reducing uncertainties** regarding new substances that require regulation.
- (4) Provision of improved risk assessment and management practices with an overall effect of **reducing future costs** associated with over-exploitation/contamination of groundwater.

